

Mergers of Binary Stars: The Ultimate Heavy-Ion Experience

Madappa Prakash

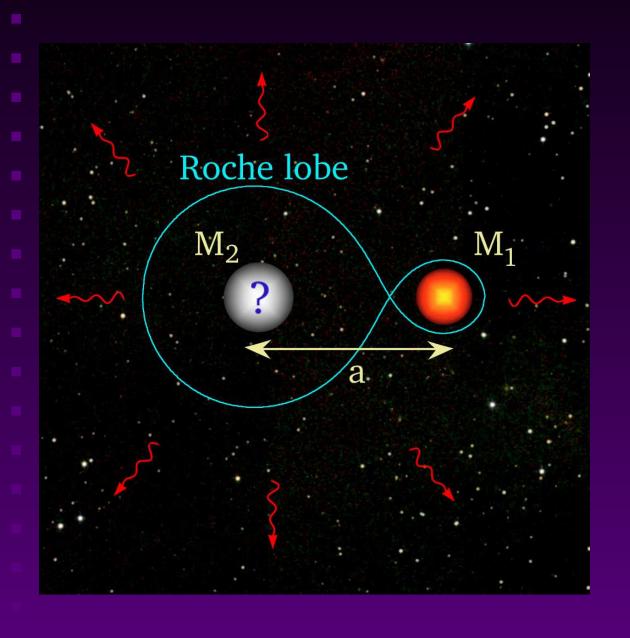
Saša Ratković

James M. Lattimer

SUNY at Stony Brook, Stony Brook, NY

QM04, Jan 11-17, Oakland

The Binary Merger Experience



- $M_1 < M_2$
- \triangleright radial separation: a(t)
- $ightharpoonup M_1$ NS or SQM
- $ightharpoonup M_2$ BH, NS, . . .
- **GW** emission:

$$L_{GW} = \frac{1}{5} \frac{G}{c^5} \langle \vec{F}_{jk} \vec{F}_{jk} \rangle$$
$$= \frac{32}{5} \frac{G^4}{c^5} \frac{M^3 \mu^2}{a^6}$$

Menceforth, whenever necessary, G = 1 & c = 1.

Merger Rates of Binary Systems

Author(s)	Information	Type	Merger Rate
Phinney (1991)	pulsar lifetimes,	cons.	5×10^{-8}
	distributions	bguess	7×10^{-6}
Van den Heuval &	pulsar detectability,	cons.	3×10^{-7}
Lorimar (1996)	distribution	bguess	8×10^{-6}
Bailes (1996)	galactic pulsar	lbound	10^{-7}
	birth rates	ubound	10^{-5}
Potegies Zwart &	"scenario machine"		0.2 - 3
Yungelson (1998)	w/ supernova kicks		$\times 10^{-5}$
Bethe &	common envelope	ubound	10^{-5}
Brown (1998)	hypercritical accretion		

Rates in $yr^{-1} Mpc^{-3}$

$$1 \text{ pc} = 3 \times 10^{18} \text{ cm}.$$

Einstein's General Relativity

$$G^{\alpha\beta} [g, \partial g, \partial^2 g] = 8\pi T^{\alpha\beta} [g]$$

- $G^{\alpha\beta}: 2^{nd}$ -order nonlinear differential operator acting on $g_{\alpha\beta}$
- $T^{\alpha\beta}$: Stress-energy tensor of matter fields

Parametrized Post-Newtonian (PPN) Formulation

In weak field limit,

$$g_{\mu\nu}^{PPN} = \eta_{\mu\nu} + h_{\mu\nu}^{1PN}(M) + h_{\mu\nu}^{2PN}(M) + h_{\mu\nu}^{3PN}(M) + \cdots$$

- $\eta_{\mu\nu}$: flat-space Minkowski metric
- \bullet M: incorporates dependence on matter fields
- $1PN, 2PN, \dots \Rightarrow [\mathcal{O}(v^2/c^2)]^{\epsilon}$ with $\epsilon = 1, 2, \dots$
- For vacuum gravitational fields (in transverse traceless gauge),

$$\Box h_{\times/+} = 0$$

Gravitational Wave Detection

- ► GW Strain : $h(t) = F_{\times}h_{\times}(t) + F_{+}h_{+}(t)$
 - $F_{\times,+}$: Constants of order unity
 - $h_{\times,+} \sim \frac{\delta L}{L_0} \sim \frac{1}{c^2} \frac{4G(E_{kin}^{ns}/c^2)}{r}$: Gravitational waveforms
 - L_0 : Unperturbed length of detector arm
 - δL : Relative change in length
 - ELF: 10^{-15} 10^{-18} Hz VLF: 10^{-7} 10^{-9} Hz*
 - LFB: 10^{-4} Hz 1 Hz, HFB: 1 Hz 10^4 Hz
- ► Astrophysical Sources Radiating GW's in the HFB

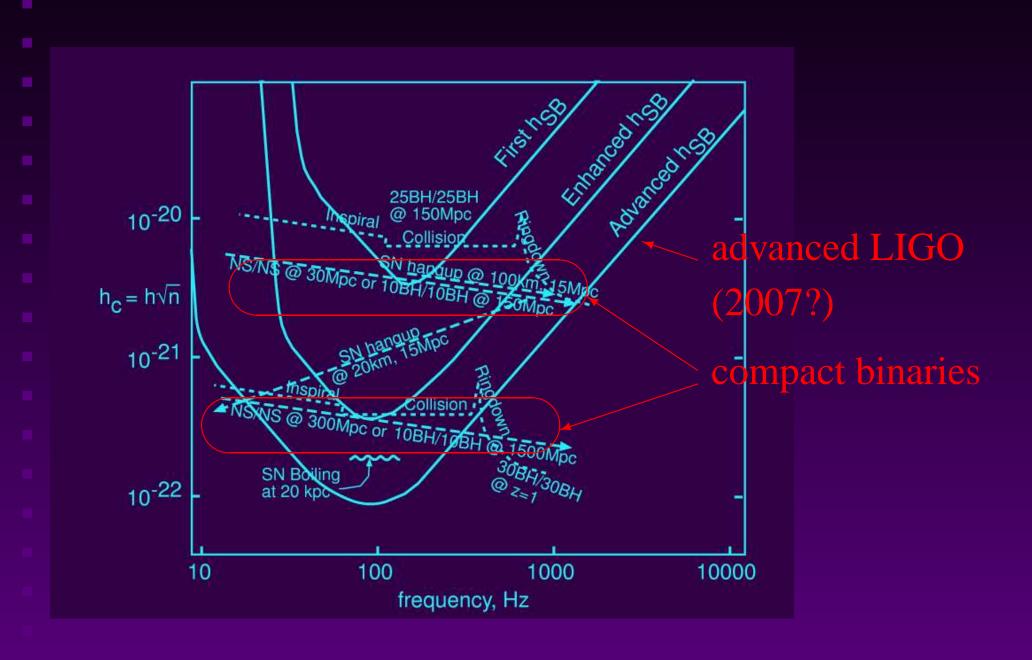
Supernovae	at 10 Mpc	$h \ge 10^{-25}$
Supernovae	Milky Way	$h \sim 10^{-18}$
$1.4 { m M}_{\odot}$ NS Binaries	at 10 Mpc	$h \sim 10^{-20}$
10M _☉ BH Binaries	at 150 Mpc	$h \sim 10^{-20}$

GW Detectors & Expected Gains

- ► Ground-Based Laser Interferometers
 - LIGO, VIRGO, GEO, TAMA, ...
- ► The Laser Interferometer Space Antenna (LISA)

- ► GW's provide valuable new information "orthogonal" to electromagnetic observations
 - First direct test of GR
 - Precise (\pm a few %) determination of Hubble's constant H_0
 - Calibration of distance measurements
 - Masses of NS, BH (large scale structure formation)
 -

LIGO's Projected Sensitivity



Objectives

- ► Explore EOS dependence of GW signals from mergers.
 - Specifically, look at differences between "normal" stars and "self-bound" (e.g., SQM) stars.
 - \circ EOS parameter: $\alpha(M_1) \equiv d \ln(R_1)/d \ln(M_1)$
 - $\circ \ \alpha_{NS} \leq 0$, while $\alpha_{SQM} \geq 0 \ (\approx 1/3)$
- ► Incorporate improved analysis to include GR orbital dynamics.
 - Extend the Roche lobe analysis from Newtonian to GR. GR makes stable mass transfer easier.
 - Include pseudo-GR potential to account for innermost circular orbit changes as a function of mass ratio. Has a dramatic effect on results for existence of stable mass transfer.
- Explore astrophysical consequences of differences in $\alpha(M_1)$ in (1) merger time scales and (2) GW signals.

Pseudo-GR Potentials

Paczyński-Wiita (accretion disks)

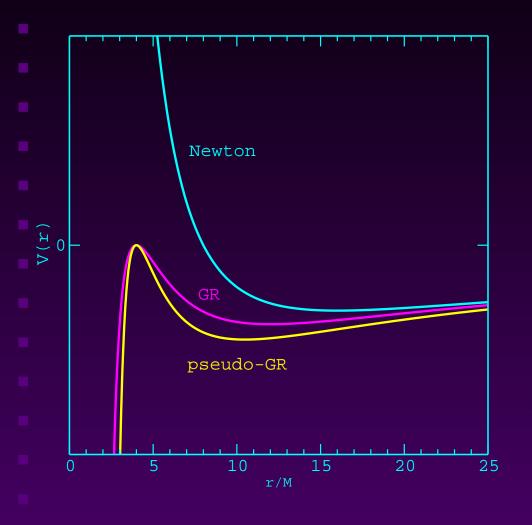
$$\phi_N(r) = -\frac{M}{r}$$
 \rightarrow $\phi_{PW}(r) = -\frac{M}{r - r_G}$

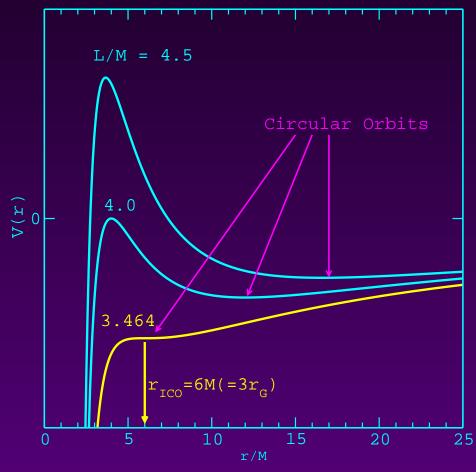
- ▶ Innermost Circular Orbit (ICO) at $r_{ICO} = 3r_G$; $r_G = 2M$
- ▶ Post-Newtonian (PN): $r_{ICO} < 3r_G$ for $q \neq 0$
- Pseudo-GR or Hybrid Potential :

$$\phi_H(r) = -\frac{M}{r - \zeta(q)r_G}; \qquad q = M_1/M_2$$

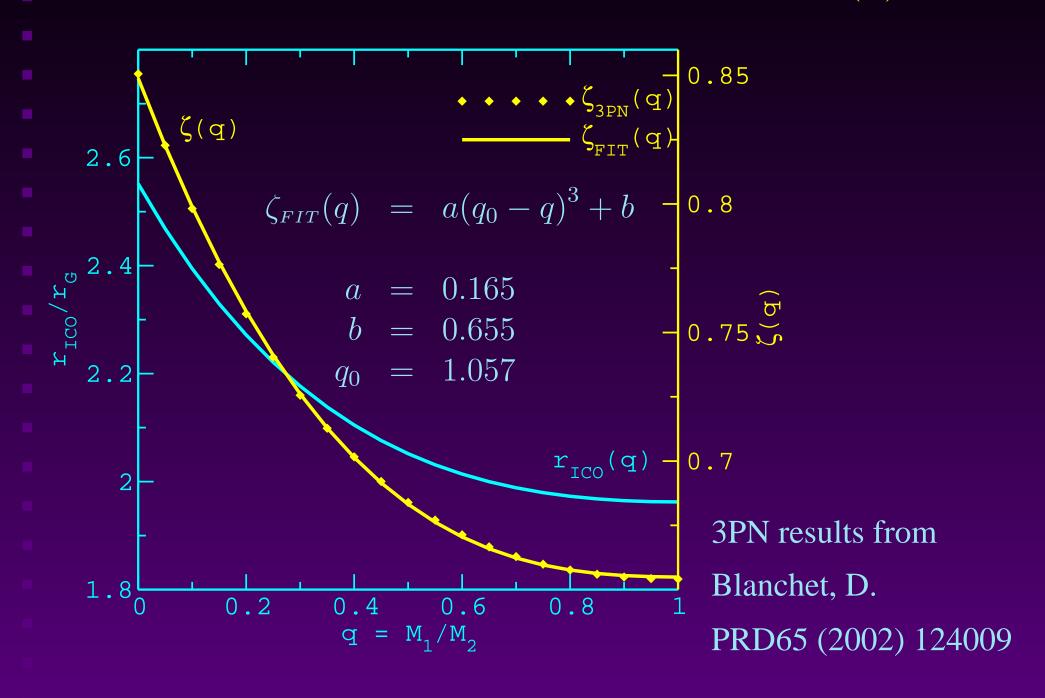
 $\succ \zeta(q)$ - Reproduces 3PN Corrections to ICO

Effective potentials and ICO





r_{ICO} & 3PN correction factor $\zeta(q)$



Roche Lobes

Two Rotating Bodies:

$$M_i \left(\frac{d^2 \vec{r_i}}{dt^2}\right)_{rot.} = M_i \left(\frac{d^2 \vec{r_i}}{dt^2}\right)_{in.} - M_i \vec{\omega} \times (\vec{\omega} \times \vec{r_i}), \quad \omega^2 = \frac{M_1 + M_2}{a(a - \zeta(q)r_G)^2}$$

Pseudo-GR or Hybrid Potential :

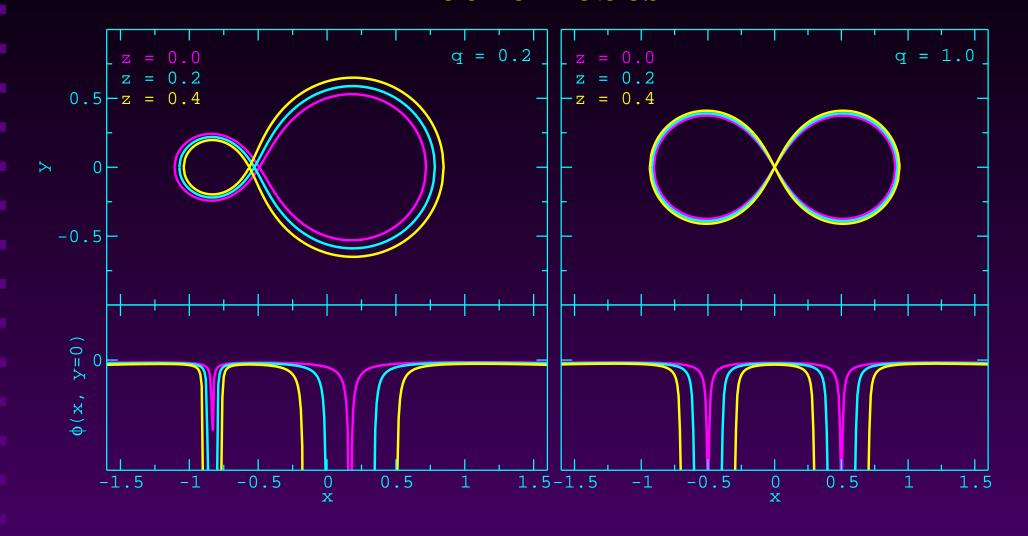
$$\phi_H^{rot}(x,y) = -\frac{M}{a} \left[\frac{x_2}{\sqrt{(x+x_1)^2 + y^2} - x_2 z} + \frac{x_1}{\sqrt{(x-x_2)^2 + y^2} - x_1 z} \right.$$

$$\left. + \frac{1}{2} \frac{x^2 + y^2}{(1-\zeta(q)z)^2} \right]$$

$$x = \frac{r_x}{a}, \qquad y = \frac{r_y}{a}, \qquad x_1 = \frac{1}{1+q}, \qquad x_2 = \frac{q}{1+q}$$

$$q = \frac{M_1}{M_2}, \qquad z = \frac{r_G}{a} = 2 \frac{M_1 + M_2}{a}$$

Roche Lobes



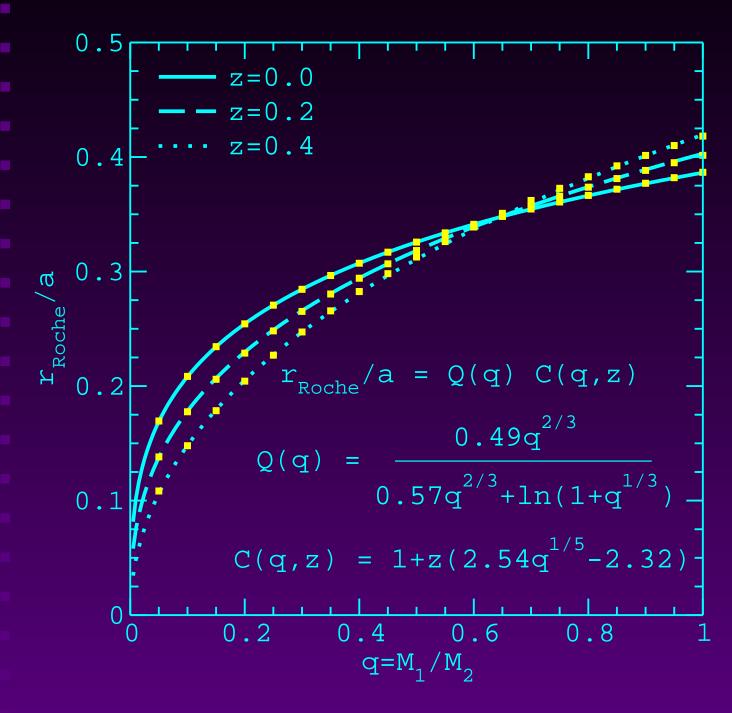
 \triangleright Effective r_{Roche} :

$$r_{Roche} \equiv \left(\frac{3}{4\pi}V_{Roche}\right)^{1/3}$$

ightharpoonup Dependences on q & z:

$$r_{Roche}/a = Q(q) C(q, z)$$
 $q = M_1/M_2 , z = 2 (M_1 + M_2)/a$

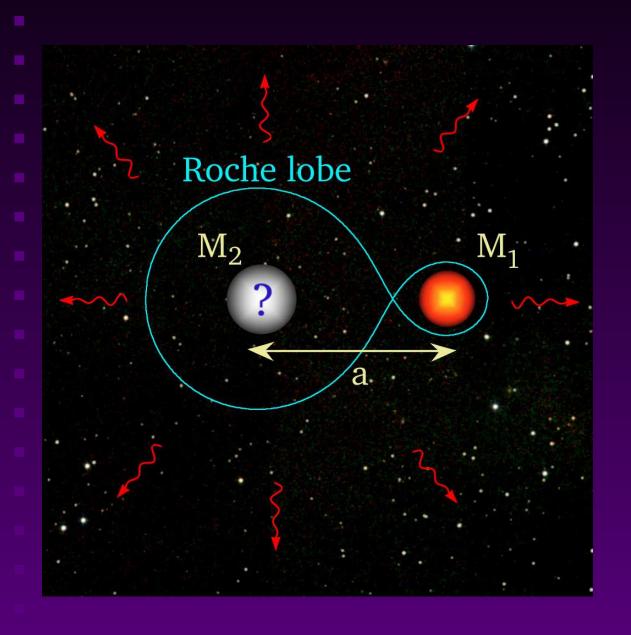
Effective Roche Radius



$$q = M_1/M_2$$

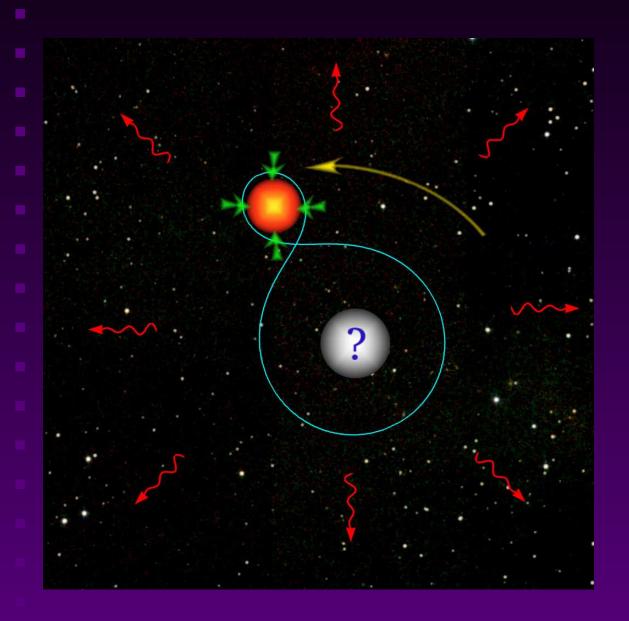
$$z = 2 \frac{M_1 + M_2}{a}$$

Roche Lobe Overflow (1)



- $ightharpoonup M_1 < M_2$
- ightharpoonup Radial Separation: a(t)
- $ightharpoonup M_1$ NS or SQM
- $ightharpoonup M_2$ BH, NS, . . .
- **GW** Emission

Roche Lobe Overflow (2)



Energy Loss

$$L_{GW} = \frac{1}{5} \langle \vec{I}_{jk} \vec{I}_{jk} \rangle$$
$$= \frac{32}{5} a^4 \mu^2 \omega^6$$

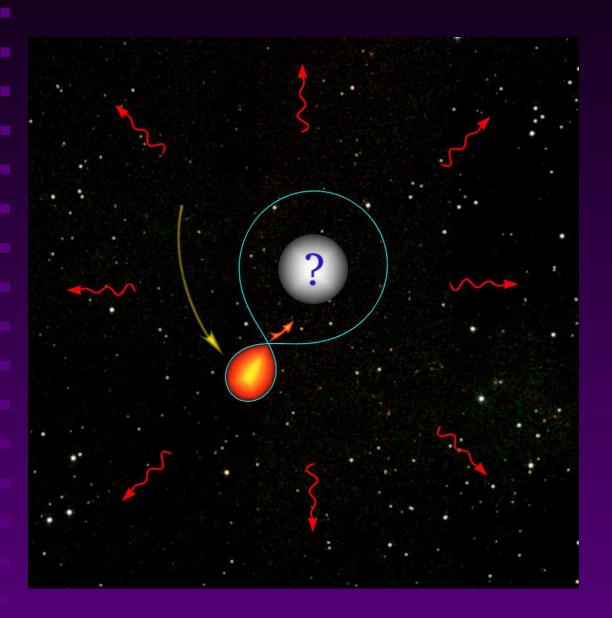
Angular MomentumLoss

$$\left(\dot{J}_{GW} \right)_i = \frac{2}{5} \epsilon_{ijk} \langle \ddot{F}_{jm} \ddot{F}_{km} \rangle$$

$$= \frac{32}{5} a^4 \mu^2 \omega^5$$

ightharpoonup a(t) and V_{Roche} shrink!

Roche Lobe Overflow (3)



$$ightharpoonup R_1 = r_{Roche}$$

⇒ Mass transfer begins!

Orbital Evolution

Angular Momentum Loss :

$$\left[\frac{1-q}{1+q} + \frac{r_G q \zeta'(q)}{a-\zeta(q)r_G}\right] \frac{\dot{q}}{q} + \frac{a-3\zeta(q)r_G}{2(a-\zeta(q)r_G)} \frac{\dot{a}}{a} = -\frac{\dot{J}_{GW}}{J_{BS}} = -\frac{32}{5}a^2\mu\omega^4$$

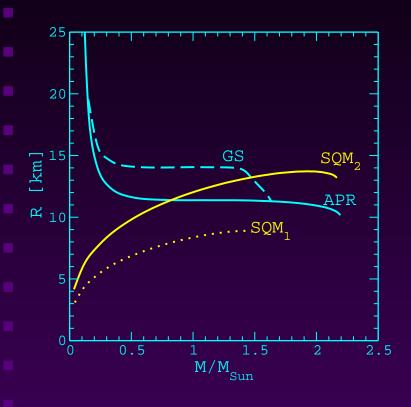
Noche Lobe :

$$\frac{\dot{q}}{q} = \frac{1 - \frac{\partial \ln C(q, z)}{\partial \ln z}}{\frac{\alpha(M_1)}{1 + q} - \frac{\partial \ln Q(q)C(q, z)}{\partial \ln q}} \times \frac{\dot{a}}{a}$$

► Connection to the dense matter EOS through

$$\alpha(M_1) \equiv \frac{d \ln(R_1)}{d \ln(M_1)}$$

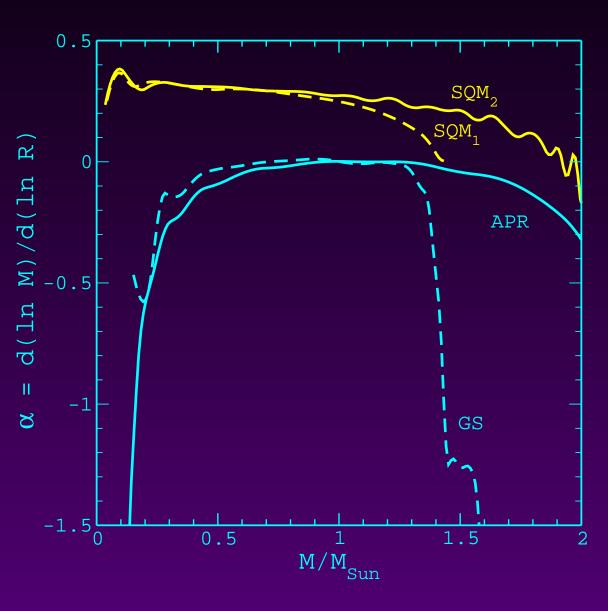
Equation of State: $\alpha(M)$



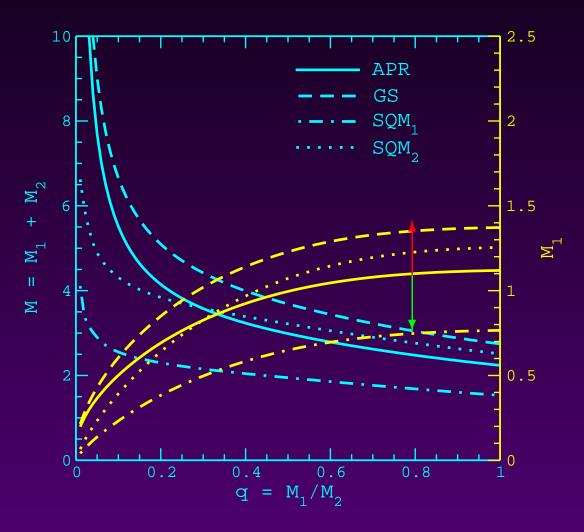
$$\rightarrow \alpha_{NS} \leq 0$$

$$\alpha_{SQM} \ge 0$$

$$(\approx 1/3)$$

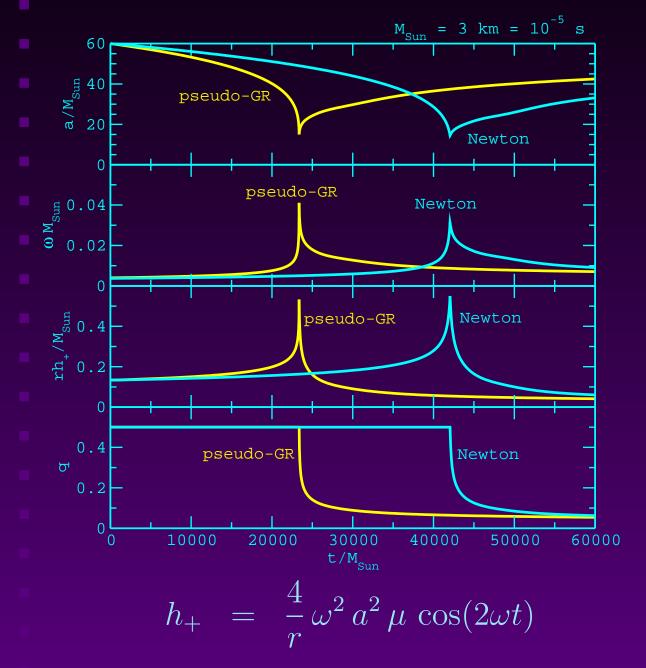


ICO Limitations



- Mass transfer starts
 - before R_1 reaches ICO $\sqrt{}$
 - after R_1 reaches ICO \times
- Roche lobe filled at ICO

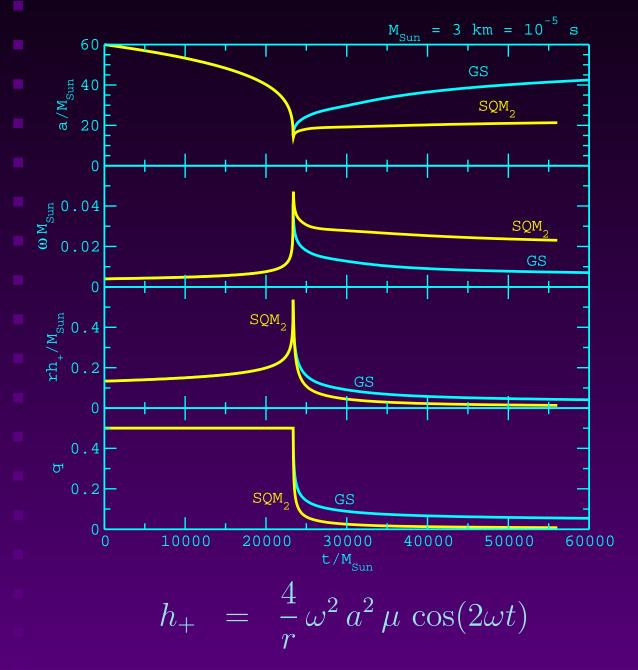
Evolution: Normal Star (GS)



$$M = 3M_{\odot}, q_{ini} = 0.5$$

- ► GR speeds up evolution
- ightharpoonup a(t) increases after "touchdown"
- $\omega(t)$ stabilizes at long times
- ► Little variation among EOS's of normal stars.
- M_1 approaches the NS minimum mass; subsequent plunge (timescale \sim a few minutes) yields a second spike in the GW signal!

Evolution: SQM Star



$$M = 3M_{\odot}, q_{ini} = 0.5$$

- ightharpoonup a(t): "hovers" after "touchdown"
- $\omega(t)$: relaxes to $>> \omega_{initial}$
- $h_{+/\times}(t) \& q(t)$: exponential decay unlike for a NS
- $M_{1,final} \rightarrow M_{nugget}^{SQM}$ unlike for a normal star; time to tiny $M_{1,final}$ is very long!

Major Results

- Incorporating GR into orbital dynamics leads to an evolution that is faster than the Newtonian evolution.
- ► Large differences exist between mergers of "normal" and "self-bound (SQM)" stars.
 - SQM stars penetrate to smaller orbital radii; stable mass transfer is more difficult than for normal stars.
 - For stable mass transfer, $q = M_1/M_2$ and $M = M_1 + M_2$ limits on SQM stars are more restrictive than for normal stars.
 - The SQM case has exponentially decaying signal and mass, while normal star evolution is slower.
 - Normal stars have 2 GW peaks vs. 1 for SQM stars.

Future Tasks

- ► Evolution of normal & self-bound star-black hole mergers including the effects of
 - non-conservative mass transfer,
 - tidal synchronization,
 - the presence accretion disk, etc.
- ► Calculation of templates of expected GW signals